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Introduction: Erectile dysfunction (ED) caused by pelvic injuries is a common complication of civil and
battlefield trauma with multiple neurovascular factors involved, and no effective therapeutic approach is available.

Aims: To test the effect and mechanisms of low-energy shock wave (LESW) therapy in a rat ED model induced
by pelvic neurovascular injuries.

Methods: Thirty-two male Sprague-Dawley rats injected with 5-ethynyl-20-deoxyuridine (EdU) at newborn
were divided into 4 groups: sham surgery (Sham), pelvic neurovascular injury by bilateral cavernous nerve injury
and internal pudendal bundle injury (PVNI), PVNI treated with LESW at low energy (Low), and PVNI treated
with LESW at high energy (High). After LESW treatment, rats underwent erectile function measurement and
the tissues were harvested for histologic and molecular study. To examine the effect of LESW on Schwann cells,
in vitro studies were conducted.

Main Outcome Measurements: The intracavernous pressure (ICP) measurement, histological examination,
and Western blot (WB) were conducted. Cell cycle, Schwann cell activation-related markers were examined in
in vitro experiments.

Results: LESW treatment improves erectile function in a rat model of pelvic neurovascular injury by leading to
angiogenesis, tissue restoration, and nerve generation with more endogenous EdUþ progenitor cells recruited to
the damaged area and activation of Schwann cells. LESW facilitates more complete re-innervation of penile tissue
with regeneration of neuronal nitric oxide synthase (nNOS)-positive nerves from the MPG to the penis. In vitro
experiments demonstrated that LESW has a direct effect on Schwann cell proliferation. Schwann cell activation-
related markers including p-Erk1/2 and p75 were upregulated after LESW treatment.

Conclusion: LESW-induced endogenous progenitor cell recruitment and Schwann cell activation coincides with
angiogenesis, tissue, and nerve generation in a rat model of pelvic neurovascular injuries.
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INTRODUCTION

Trauma-related erectile dysfunction (ED) commonly occurs in
the setting of pelvic surgery or as a result of local injuries such as
improvised explosive device in battlefield, and is most often
associated with the damage of cavernous nerves (CN) and/or
internal pudendal bundle (IPB).1,2 After injury, ischemia and
neural degeneration lead to both impaired erectile capability and
its lack of response to therapy.3 Current treatments include oral
phosphodiesterase V inhibitors, vacuum erection devices, penile
injection, transurethral therapy, and penile prosthesis, but none
of these can restore normal erectile physiology.4 In addition, we
lack a good animal model to study neurovascular ED. Conse-
quently, both basic and translational researchers are continuing
to search for effective strategies.5
J Sex Med 2016;13:22e32
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Low-energy shockwaves (LESW) have been used for years to
treat musculoskeletal disorders.6 Recently, the application of
this therapy has been expanded to address ischemic heart dis-
ease7 and vasculogenic ED,8 but there are few reports con-
cerning the effects shock waves have on nerve fibers or
neurovascular ED. In 2001, Ohtori et al reported LESW
stimulated reinnervation of sensory fibers,9 and in 2006 another
Japanese group found that shock waves induce the expression of
growth-associated protein-43 (GAP-43, a marker for axonal
growth cones) in rat dorsal root ganglia (DRG).10 Shock waves
have also been reported to induce DRG cells to express acti-
vating transcription factor 3 (ATF3), which promotes neurite
outgrowth from the ganglion when the peripheral axon is
injured.10 Also, we have reported that LESW improves diabetic
ED in an animal model by promoting nerve regeneration,11 a
finding confirmed by another group.12 Clinically, LESW
therapy also has been proven to be a potential treatment for
angiogenesis and penile rehabilitation.13,14

Recovery of neurovascular ED is a tough task involving the
vascular system and the peripheral nervous system, whereas
regeneration of peripheral nerves after pelvic injury is a complex
process related to neurons, Schwann cells, basal lamina, and
responsiveness of end organs. Among the orchestration of these
various cells, Schwann cells are often the “first responders” in this
microenvironment15 and play an important guiding role,16 which
could be promoted by mechanical force.17 Schwann cells play an
important role in axon regeneration after injury, including CN
injury that leads to ED.18 In the penile nerve system, Schwann
cells have been found to be functional in Remak bundles/C fibers
(mainly composed in the cavernous nerve) and A-d fibers (mainly
composed in the internal pudendal nerve).15,19 However, the
effects of Schwann cells during the penile nerve regeneration have
not been well elucidated though indirect evidence claims that
treatments aiming to promote the growth of Schwann cells result
in better erectile function recovery.20,21

In the current study, we developed a new ED rat model of
pelvic neurovascular injury (PVNI) by bilateral cavernous nerve
injury and internal pudendal bundle injury, and tested the effect
of LESW treatment at different energy levels. We hypothesized
that LESW might improve function, angiogenesis, and in-
nervations by activating local Schwann cells and increasing
progenitor cell recruitment.
MATERIALS AND METHODS

Experimental Design
All procedures were approved by the Institutional Animal

Care and Use Committee of University of California, San
Francisco. A total 32 newborn male Sprague-Dawley rats were
used for this study. Each pup received an intraperitoneal in-
jection of 5-ethynyl-20-deoxyuridine (EdU, 50 mg/kg, Invi-
trogen, Carlsbad, CA, USA) as previously reported.22 At 12
weeks old, they were grouped into 4 (n ¼ 8 each): sham surgery
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(Sham), pelvic neurovascular injury by bilateral cavernous nerve
injury and internal pudendal bundle injury (PVNI), PVNI
treated with LESW at low energy (Low), and PVNI treated
with LESW at high energy (High). After 4 weeks of LESW
treatment and 1 week of washout, all rats underwent erectile
function measurement. The rats were then sacrificed and the
penis (half for histology and half for Western blot), major
pelvic ganglion (MPG), and urethra were harvested for histol-
ogy and Western blot.

In vitro studies were conducted using primary tissue culture of
rat Schwann cells. Four rats (5 weeks old) were sacrificed and the
sciatic nerves were harvested for isolation of Schwann cells as
previously reported.23
Develop Pelvic Neurovascular Injury Rat Model
Bilateral cavernous nerve injury (CNI) was performed as

previously described,24 whereas the IPB injury (IPBI) was con-
ducted as follows: the rat was positioned into lithotomy and a
horizontal perineal incision was made. The IPB was identified
between the ischiocavernosus muscle (ICM) and the bulbo-
spongiosus muscle (BCM). Suture ligation was performed
bilaterally. The sham surgery was performed exactly as the
described procedure, except that no CNI or IPBI was induced.
Primary Culture of Rat Schwann Cells
Purified Schwann cells culture was created using methods

described by Shen et al.23
Low-energy Shockwave Treatment
For the in vivo experiment, LESW therapy was started 48 hours

postoperatively. Shockwave was delivered to the pelvic region with
a special probe that was attached to a compact electrohydraulic
unit with a focused shockwave source (DermaGold, MTS Europe
GmbH, Konstanz, Germany). Under anesthesia, each rat was
placed in the supine position with its lower abdomen shaved and
the preputial skin reduced. Standard commercial ultrasound gel
(Aquasonic, Parker Laboratories Inc, Fairfield, NJ, USA) was
applied between the probe and the skin of pelvic region for
optimal coupling. In the low-energy group, 0.06 mJ/mm2, 300
pulses at 3 Hz was applied, while 0.09 mJ/mm2, 1000 pulses at 3
Hz was applied in the high-energy group.

For the in vitro experiment, cell cultures were used for LESW
treatment. Schwann cells received LESW treatment (0.02
mJ/mm2, 200 pulses at 3 Hz) after reaching 70% confluence. The
probe was handled under the cell culture dish with standard
commercial ultrasound gel applied between dish and probe. The
cells were treated once and then harvested or checked at corre-
sponding time points.
Erectile Function Evaluation
An intracavernous pressure (ICP) test was used to evaluate

erectile function as previously described.24 In brief, under



Table 1. Antibodies Used in Immunofluorescence Staining (IF) and Western Blot (WB)

Name Abbrev Dilution Product information

IF anti-von Willebrand factor vWF 1:400 ab6994, abcam, Cambridge, MA, USA

anti-neurofilament NF 1:400 MAB5262, Merk Millipore, Billerica, MA, USA

anti-neuronal nitric oxide synthase nNOS 1:200 SC-648, Santa Cruz Bio-technology, Santa Cruz, CA, USA

anti-S100 S100 1:200 Z0311, Dako, Carpinteria, CA, USA

anti-p-Erk1/2 p-Erk1/2 1:500 9100, Cell Signaling Technology, Framingham, MA, USA
WB anti-b-actin b-actin 1:1000 SC-47778, Santa Cruz Bio-technology, Santa Cruz, CA, USA

anti-neuronal nitric oxide synthase nNOS 1:200 SC-648, Santa Cruz Bio-technology, Santa Cruz, CA, USA

anti-SDF-1 SDF-1 1:500 SC-28876, Santa Cruz Bio-technology, Santa Cruz, CA, USA

anti-p75 p75 1:200 ab3125, Abcam, Cambridge, MA, USA

anti-p-Erk1/2 p-Erk1/2 1:200 9100, Cell Signaling Technology, Framingham, MA, USA

anti-Erk1/2 Erk1/2 1:400 9926, Cell Signaling Technology, Framingham, MA, USA
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ketamine (100 mg/kg) and midazolam (5 mg/kg) anesthesia, the
MPG and CN were exposed via midline laparotomy. The
corpus cavernosum was cannulated with a heparinized (200
U/mL) 25-gauge needle and connected to a pressure trans-
ducer (Utah Medical Products, Midvale, UT, USA). The
stimulus parameters were 1.5 mA, 20 Hz, pulse width of 0.2
ms, and duration of 50 seconds. The maximum increase of the
ICP curve of 3 stimuli per side was selected for statistical
analysis in each animal. Mean arterial blood pressure (MAP)
was recorded using a 25-G needle inserted into the aortic
bifurcation after the ICP test. ICP/MAP was calculated as the
ratio of maximum change of ICP to MAP. Area under the
receiver operating characteristic curve (AUC) was recorded as
the proportion under the ICP curve during the stimulation of
50 seconds.
Immunofluorescence Staining
Immunofluorescence (IF) staining of rat tissue was per-

formed according to a previously described protocol.24 In brief,
the tissue was harvested and fixed with 2% formaldehyde and
0.002% picric acid in 0.1 mol/L PBS for 4 hours, followed by
immersion in 30% sucrose in PBS overnight at 4�C. Tissues
were positioned into the same angle and embedded into an
optimal cutting temperature compound (OCT, Sakura Finetek,
Torrance, CA, USA). Tissue blocks were stored at �80�C.
Before sectioning, the blocks were transferred into �20�C.
Frozen sections (�20�C) were cut at a thickness of 5 mm.
Schwann cells were cultured on cover slips placed in 6-well
plates. Eight hours (for p-Erk) after LESW treatment or
mock treatment, the cells were fixed in cold paraformaldehyde
(4%) at 4�C for 15 minutes. Then the cover lips were pro-
ceeded for IF staining.

The tissue sections were incubated with primary antibodies
overnight at 4�C. The antibodies used in histology are listed in
Table 1.The secondary antibodies used were Alexa-488 and
Alexa-594 conjugated antibodies (1:500, Invitrogen, Carlsbad,
CA, USA) and the incubation time for secondary antibody is 2
hours at room temperature. Smooth muscle actin (SMA) was
stained by Alexa-488econjugated phalloidin (1:400, Invi-
trogen) and EdUþ cells were stained with Click-IT reaction
cocktail (Click-IT, Invitrogen) as manual respectively. Nuclei
were stained with 40,6-diamidino-2-phenylindole (DAPI,
Invitrogen).

The stained slides were examined with a fluorescence micro-
scope (Nikon, Eclipse, 80i). Image analysis was performed by
calculating the computerized densitometry or number of positive
targets using Image-Pro Plus 5.1(Media Cybernetics, Silver
Spring, MD, USA). The following variables were analyzed by
number calculating: number of blood vessels and nerve bundles in
the dorsal section of the penis, number of EdU positive cells in the
cavernosal section of penis, and number of nuclei for Schwann
cells. The amount of von Willebrand factor (vWF), neuronal
nitric oxide synthase (nNOS), S100, neurofilament (NF), and
p-Erk1/2 was analyzed with Image-Plus 5.1 software (Media
Cybernetics, Bethesda, MD, USA) based on the integrated optical
density of the positively stained area in high-power fields among
4 groups. All the data were calculated in a blinded fashion.

The average number of blood vessels (phalloidin stained green
rings) and nerve bundles (the collections of NF stained red dots)
within penile dorsal area were counted and calculated (n ¼ 8 for
each group).
Western Blot
Protein isolation and Western blot were conducted as previ-

ously reported25 and a total of 20 mg protein were loaded for
each sample. The antibodies used in Western blot are listed in
Table 1. After the secondary antibody incubation, the resulting
images were analyzed with ChemiImager 4000 (Alpha Innotech
Corp, San Leandro, CA, USA) to determine the integrated
density value of each protein band.
J Sex Med 2016;13:22e32



Figure 1. A. Representative intracavernous pressure (ICP) recording of each experimental group. Black curve represents ICP values in
response to cavernous nerve (CN) stimulation. The black bar represents 50 seconds electrical stimulation of the CN. B. Data analysis of ICP
test. ICP/MAP was calculated as the ratio of maximum change of ICP to MAP. AUC was recorded as the proportion under the ICP curve
during the stimulation of 50s. Mean ± standard error of the mean (SEM) for each group. *P < .05. MAP ¼ mean arterial pressure; AUC ¼
area under curve.
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Cell Cycle Assay
For cell cycle analysis, 104 cells were collected for each assay.

Cell cycle synchronization was induced by serum starvation. The
cells then underwent LESW or mock treatment. The cells were
stained with the propidium iodide flow cytometry kit (ab139418,
Abcam, Cambridge, MA, USA) according to the manual. The cell
cycle was checked at time point 0 hours and 8. 16, and 24 hours
after the LESW treatment using flow cytometry (BD, influx, Cell
Sorter, Franklin Lakes, NJ, USA) and the results were analyzed
with FlowJo (Tree Star, Inc, Ashland, OR, USA).
Statistical Analysis
Results were analyzed using Prism 5 (GraphPad Software, San

Diego, CA, USA) and expressed as mean ± standard deviation of
the mean (SEM). Multiple groups were compared using t test (2
variables) or 1-way analysis of variance followed by the Tukey-
Kramer test for post-hoc comparisons (4 variables). Statistical
significance was set at P < .05.
RESULTS

Low-energy Shockwave Treatment Improves
Erectile Function
PVNI-impaired erectile function compared with sham pro-

cedure, whereas significant improvement was evident after
J Sex Med 2016;13:22e32
LESW treatment (Figure 1A). To evaluate recovery of erectile
function, we analyzed the ratio of maximum change of ICP to
MAP (ICP/MAP) and AUC of the ICP results. Both treated
groups showed a significant increase in ICP/MAP compared with
control group (0.56 ± 0.10 and 0.82 ± 0.08 vs 0.17 ± 0.03, P <

.05). Rats in the higher LESW group showed significant recovery
(P < .05) compared with the control group with larger AUC
(23.83 ± 2.42 vs 8.13 ± 0.55). Overall, these measures suggest
partial recovery of erectile function in both treated groups, with
rats in the high group demonstrating better recovery relative to
the low group (Figure 1B).
LESWTreatment Enhances Penile Angiogenesis and
Regains Blood Circulation in PVNI Group of Rats

To determine if the improvement in erectile function corre-
lated to changes in tissue vascularization in the dorsal sections we
counted the number of blood vessels. Post the PVNI, the penile
dorsal artery collapsed and endothelium were significantly atro-
phied (Figures 2A and 2B). Impressively, collapsed penile dorsal
arteries regain a normal-looking structure with many small blood
vessels around it (Figure 2A). Also, LESW promoted the
expression of vWF in the penile tissue in both the lower- and
higher-energy groups (Figures 2B and 2D). In line with im-
provements in erectile function, the higher LESW treated group
had improved outcome of tissue regeneration. These results



Figure 2. General neurovascular changes in penile tissue. A. Representative images of immunofluorescence staining for vascular smooth
muscle (Pha- Alexa 488 conjugated phalloidin-green) and dorsal nerve (NF-red, original magnification is �4) in 4 groups. Dotted lines
surround the dorsal parts. Typical blood vessels were indicated with white arrows and typical nerve bundles were indicated with white
triangles. B. Representative images of immunofluorescence staining for endothelium (vWF-red, original magnification is �400) in sinusoid.
C. Average number (± SEM) of nerve bundles (NF dots collections) and blood vessels (smooth muscle rings) in the dorsal neurovascular
area of each sample, *P < .05 compared with control group, #P < .05 compared with sham group; D. Average IOD amount (± SEM) of vWF
staining in sinusoid, *P < .05. NF ¼ neurofilament; wWF ¼ von Willebrand factor.
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indicate that while at 5 weeks after pelvic injury, the control rats
could regenerate the number of blood vessels to a nearly normal
level, but the erectile function was not restored in these animals.
Therefore, after pelvic injury LESW treatment stimulates
increased generation of blood vessel that is strongly correlated
with improved function. These studies indicate that LESW is
beneficial in cavernous tissue rehabilitation.

LESW Promotes Penile Nerve Regeneration
Within the penis, recovery of the dorsal nerve was exam-

ined with IF staining of NF. The number of nerve bundles
was significantly improved in LESW-treated groups
(Figures 2A and 2C). The majority of nNOSþ nerve fibers
originate from DCR-MPG. They form Remak bundles and
join other nerve fibers to become the cavernous nerves. To
tracing the regeneration process of nNOSþ Remak nerve
fibers, 4 levels of tissue sections were performed: at the
MPG, the cavernous nerve at distal site from nerve crush
along urethra (CN); dorsal penile nerve (DPN); and the
penile sinusoid (Figure 3A).

Nerve injury significantly decreased nNOSþ nerve fibers at all
3 nerve levels (CN, DPN, and sinusoid) except in the MPG
(Figures 3A and 3B). After LESW treatment, the numbers of
nNOS containing fibers increased (Figure 3B). Increased nNOS
expression in the treatment groups was confirmed with Western
blot using the protein lysates from penile tissue (Figures 3C and
3D). High-energy level LESW treatment might lead to enhanced
regeneration of nNOSþ nerve fibers compared with low energy
levels of LESW; however, these differences were not significant
between the 2 groups.
J Sex Med 2016;13:22e32



Figure 3. LESW treatment promotes the regeneration of neuronal nitric oxide synthase (nNOS) positive nerves from the major pelvic
ganglion (MPG), cavernous nerve (CN) to the penis (dorsal penile nerve or DPN and sinusoid). A. Representative images of immuno-
fluorescence staining for nNOS (red). Original magnification is �100 (MPG, CN), �200 (DPN) and �400 (sinusoid).The white rectangles
denote the area selected for amplification. Typical nNOSþ nerves were indicated with white arrows. B. Average IOD amount (± SEM) of
nNOS by calculating the densitometry IF staining. C. Representative image of Western blot for nNOS in penile tissue. D. Western blot
analysis of nNOS. *P < .05.
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LESW Treatment Enhances Recruitment of EdU
Positive Cells
Because progenitor cells or cells with stem properties are recog-

nized by their ability to retain thymidine analog EdU for an
extended period of time, we examined recruitment of EdUþ cells in
animals given a single EdU injection at birth.22 An energy-lev-
eledependent increase between treatment groups (P < .05) in
EdUþ cells in the cavernosal tissueswas evident (Figures 4Aand4B).
Using lysates from penile tissue, wemeasured the expression level of
chemokine stromal derived factor 1 (SDF-1; Figures 4C and 4D), a
classic chemoattractant for progenitor cell recruitment.26 After
pelvic injury, higher expression of SDF-1 correlated with increased
number of EdUþ cells, and this effect was significantly enhanced by
LESW treatment, especially in the higher LESW group (P < .05).
Schwann Cells During Penile Nerve Regeneration
and Effects From LESW Treatment
Schwann cells are critical for nerve fiber growth and regener-

ation. To further examine the mechanism of nerve regeneration,
we explored the process of Schwann cell activation, which is
characterized by dedifferentiation, redifferentiation, proliferation,
and maturation. Two kinds of Schwann cells were distributed in
J Sex Med 2016;13:22e32
penile nerves: myelinated Schwann cells (mSC) and nonmye-
linated Schwann cells (nmSC). In the tissue section of dorsal
nerve, we quantified the relative number of DAPIþ dots in the
dorsal nerve fiber (primarily Schwann cell nuclei of both mSC
and nmSC),27 as well as mature Schwann cell marker S100
(Figures 5A and 5B). The number of Schwann cells within
dorsal nerves increased in the higher LESW group compared
with the other 3 groups, whereas S100 was highly expressed in
both sham and higher LESW-treated groups (Figure 5B).
Based on the DAPI results it appears that 5 weeks after pelvic
injury, the number of cells (including Schwann and other
cells) increased to normal levels spontaneously (i.e. the PVNI
group) whereas LESW treatment increased the number
further. The decreased expression of S100 in the PVNI group
compared with the sham group possibly indicates degenera-
tion of some Schwann cells after nerve injury. S100 staining
was increased in the LESW treatment groups, suggesting that
LESW may enhance proliferation of Schwann cells. Moreover,
we examined 2 markers for Schwann cell dedifferentiation and
proliferation after pelvic injury: p75 and p-Erk1/2. Western
blot of the penile tissue indicated that both p75 and p-Erk1/2
were significantly increased after LESW therapy (Figures 5C
and 5D).



Figure 4. Recruiting of endogenous progenitor cells by LESW in vivo. A. Representative of 5-ethynyl-20-deoxyuridine (EdU, red, indicated
with white triangles) positive cells in cavernosum. Original magnification is �200. B. Average number (± SEM) of EdU-positive cells per
high power field. C. Representative image of Western blot for SDF-1 in penile tissue. D. Western blot analysis of SDF-1. *P < .05. SDF-1 ¼
stromal derived factor 1.
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Effect of LESW on Cultured Rat Schwann Cells
In Vitro

Using LESW on cultured adherent Schwann cells, similar to
the in vivo results, the expression of p-Erk1/2and p75 also were
significantly elevated after LESW treatment (Figures 6A and 6B).
In IF staining, we observed that p-Erk1/2 tended to accumulate
in Schwann cell nuclei after LESW treatment, possibly indicating
that LESW therapy triggers the initiation of p-ERK1/
2emediated downstream pathways in Schwann cells
(Figure 6C). Additionally, we quantified the number of cells in
particular cell cycle phases. G1/G0 phase typically indicates
dormancy or resting phase before proliferation, S phase indicates
the DNA replication, and G2/M phase is when cell division
occurs. Within 8 hours after LESW treatment, a higher percent
of Schwann cells entered the S phase and the G2/M relative to
untreated cells, and this increase in the percentage of cycling
Schwann cells remained for 24 hours (Figures 6D and 6E).
Together, these data demonstrate the growth-promoting effect of
LESW on Schwann cells.

DISCUSSION

Though the standard CNI-induced ED model is consistently
used to study ED,28 there is currently no good animal model to
mimic neurovascular ED. In this study, we combined CNI with
IPBI to establish an ED model in the rat that closely replicates
human pelvic injury during surgery and trauma. This combined
injuries model successfully impaired erectile function for a long
duration, allowing for extended duration studies of ED
therapies.29

CNI and IPBI lead to ischemia, neurodegeneration, and
impaired erectile capability. We tried to establish a new clinical
approach to fix this condition. Recently, low energy shock wave
(LESW) treatment is proved to be a promising therapeutic
strategy for ED that has been tested in clinical trials
(NCT01317693, NCT01811797, NCT01274156,
NCT00901056, and others at http://clinicaltrials.gov). The
mechanisms of the precise therapeutic and biological effects in
LESW treatment are still not completely understood. Prior ex-
periments found that LESW induces neovascularization by
upregulating the expression of VEGF and its receptor30 and
mobilization of progenitor cells.31 The biologic responses of
LESW appear to be time dependent and according to a previous
report, the peak response occurs 4 weeks after treatment.32

In this project, rats in the treated groups showed improved
functional and histologic recovery after 4 weeks of LESW
treatment. We noted that angiogenesis and recirculation were
J Sex Med 2016;13:22e32
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Figure 5. Activation of Schwann cells by LESW in vivo. A. Representative images of immunofluorescence staining for NF (green) and
S100 (red) in dorsal nerve. Original magnification is �200. B. The number of Schwann cells by calculating the number of DAPI dots
(standardized to the number of nerve fiber dots which was stained with NF) and expression of S100, which is a marker for mature Schwann
cells (standardized to the densitometry of NF). C. Representative image of Western blot for p75 neurotrophin receptor (p75) and Phosphor
Erk1/2 (p-Erk1/2) in penile tissue. D. Western blot analysis of p-Erk and p75. *P < .05. NF ¼ neurofilament.
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significantly promoted after LESW treatment. The major nerve
components in the penile nerve system demonstrated signifi-
cantly more regeneration after LESW treatment when compared
with the spontaneous regeneration in the untreated control
group rats. The accelerated regeneration of nerve fibers,
including nNOSþ nerve fibers, is especially exciting as neural
injury and lack of functional nerve recovery are believed to be the
crux of why neurovascular ED is refractory to therapy.

Recruitment of sufficient progenitor cells through the vascular
network and interstitial tissues is usually the first step of tissue
regeneration, and is required for tissue maintenance and injury
repair.33 However, in most studies exogenous progenitor cell
application has not been highly successful for various reasons,
including inefficient migration to target organs.33,34 It has been
suggested that direct recruitment of endogenous progenitor cells
to the target organ of interest might improve the outcome of
progenitor cell treatment.33,35 In our present work we used label
retaining cell technique with EdU36,37 and found more endog-
enous progenitor cells in penile tissue after pelvic injury,
consistent with the process of tissue repair and a previous
report.38 Additionally, we found that LESW therapy led to a
significant increase in local progenitor cell numbers relative to
untreated animals, in line with our previous report using a dia-
betic ED model,11 and that the expression of SDF-1, which plays
a primary role in progenitor cell recruitment,39 is correlated with
J Sex Med 2016;13:22e32
the number of EdUþ cells in penile tissue. LESW might act to
increase and maintain the concentration of SDF-1 in penile
tissue post injury, thus potentiating and prolonging the recruit-
ment of endogenous progenitor cells and amplifying in situ tissue
regeneration. Many different types of cells can secrete SDF-1,
including endothelial cells and smooth muscle cells during
injury or in response to hypoxia, and progenitor cells that express
CXCR4 could be recruited through SDF-1/CXCR4 axis.39,40

Progenitor cells predominantly contribute to tissue regenera-
tion through their paracrine ability.41 It is currently unclear if
progenitor cells in LESW-treated tissues are local cells induced to
divide, recruited from other sites, or both. In addition, the
biological effects of either progenitor cell division or recruitment
to penile tissue in this ED model remain open questions.

In humans, peripheral nerve regeneration after injury is
known to be a slow process, and may be an underlying factor in
the loss of innervated tissue function. Therefore, a potential
avenue for ED treatment would be a therapy that enhances the
kinetics of nerve regeneration after injury. Successful peripheral
nerve regeneration is promoted by Schwann cell activation.
After injury, it is thought that some Schwann cells dediffer-
entiate into a progenitor-like state, proliferate, and then repo-
pulate the damaged nerve.42 This is critical to navigate the
growth of new nerve fibers, especially within the first week or 2
after injury.43,44



Figure 6. LESW promotes the activation of Schwann cells in vitro. A. Representative image of Western blot for p75 neurotrophin receptor
(p75), Phosphor Erk1/2 (p-Erk1/2) in Schwann cells 24h (p75) or 8h (p-Erk1/2) after LESW treatment (SW) or mock treatment (Control). B.
Western blot analysis of p-Erk (8h) and p75 (24h). C. Representative images of immunofluorescence staining for p-Erk1/2 (green) in
Schwann cells 8 hours after LESW treatment (SW) or mock treatment (Control). Original magnification is �400. D. Representative of cell
cycle image before treatment (0h) and 8, 16, 24 hours after LESW treatment (SW) or mock treatment (Control). E. Percent of cells in
different cell cycle periods. *P < .05.
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In our experiment, upregulation of the crucial activation
signaling pathway mediator phosphorylated ERK (p-Erk) is sig-
nificant after treatment. ERK/MAPK signaling is a classic pathway
for induction of cell proliferation45 and high levels of p-Erk are
also a crucial trigger of dedifferentiation of Schwann cells.42 p75
neurotrophin receptor (p75) expression is a hallmark of Schwann
cell dedifferentiation. Currently, the kinetics of p75 expression
after injury is unknown, but we also found that expression of p75
is significantly upregulated after LESW treatment both in vitro
and in vivo. Together, increased expression of these markers in-
dicates that LESW induces both dedifferentiation and prolifera-
tion (also verified by cell cycle analysis) of Schwann cells. Though
S100 has been widely used as a cell marker for Schwann cells
in vitro and in vivo, it is worth noting that S100 is not a specific
marker. Downstream of dedifferentiation and proliferation, S100
is recognized as a maturation gene and represents the amount of
mature Schwann cells.46 In our experiment, the amount of mature
Schwann cells decreased after pelvic injury because of nerve
degeneration. Dedifferentiation and proliferation of Schwann cells
distal to the site of injury along with activation of ERK/MAPK
and p75 result in more mature Schwann cells and creating and
maintaining an environment amenable to nerve regrowth by
LESW.
CONCLUSION

LESW treatment improves erectile function in a rat model
of pelvic neurovascular injuries. Penile tissue components,
especially vascular and neuronal tissue, demonstrated improved
recovery after LESW therapy. The mechanism of these beneficial
effects appears to be through the recruitment of endogenous
progenitor cells and activation of Schwann cells.
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